
Canvas LTI Student Climate Dashboard Mark II
Final Report

Team Number: sdmay23-42

Client: Henry Duwe

Adviser: Nicholas Fila

Team Members:

Joshua Harvey – Team Manager & Resonance Scoring

 Colin Hasbrook – Canvas API Wrapper & Sentiment Analysis

 Elias Simpson – Kubernetes, Docker, Server, Infrastructure

 Howard Chi – UI

 Hailee Leonard - UI

 Jonathan Giblin – Okta Authentication, Infrastructure, CI/CD

Team Email: sdmay23-42@iastate.edu

Team Website: https://sdmay23-42.sd.ece.iastate.edu/

Revised: 4/29/2023

Contents
Canvas LTI Student Climate Dashboard Mark II .. 1

Contents .. 2

List of Figures .. 4

1. Introduction .. 5

1.1 Problem Statement ... 5

1.2 Terms and Definitions ... 5

1.4 Intended Users and Uses .. 5

2. Evolution of Project Design ... 5

2.1 Canvas API ... 6

2.2 Resonance & Journey Map ... 6

2.3 Front-end .. 6

3. Requirements .. 7

3.1 Functional requirements (specification) ... 7

3.2 Resource Requirements .. 7

3.3 Physical Requirements .. 7

3.4 Aesthetic Requirements .. 7

3.5 User Experiential Requirements ... 8

3.6 Economic/market Requirements .. 8

3.7 UI Requirements ... 8

4. Engineering Standards .. 8

5. Engineering Constraints .. 9

6. Security Concerns and Countermeasures ... 9

7. Implementation Details .. 10

7.1 Implementation Overview .. 10

 .. 10

7.2 Canvas API ... 11

7.3 Resonance & Journey Map ... 11

7.4 Front-end .. 13

7.5 Server & Microservices ... 14

8. Testing Process and Test Results .. 16

Canvas API ... 16

SQL Testing .. 16

Data Analysis Pipeline ... 16

Front End ... 17

9. Related Literature and Products ... 17

10. Conclusion ... 18

Appendix I - Operation Manual... 19

Install Outside Tools .. 19

Installing Docker on Ubuntu 18.04/20.04 ... 19

Installing Docker-Compose on Ubuntu 18.04/20.04 .. 20

Installing Kubernetes on Ubuntu 18.04/20.04.. 20

Installing Protoc on Ubuntu 18.04/20.04 ... 20

Set Up Cluster Infrastructure .. 20

Initialize the Kubernetes Cluster ... 20

Setup Container Networking Interface ... 20

Setup Container Registry .. 21

Application Set Up... 21

Build Application ... 21

Deploy Application .. 22

Setting Proper Access Token from Canvas .. 22

Deploying Microservices to Kubernetes ... 22

Set Up MySQL Database ... 23

User Manual .. 24

Frontend .. 24

Kubernetes .. 25

Useful commands ... 25

Error logs ... 26

Troubleshooting deployments .. 26

Building images ... 26

Pod deployment .. 26

Appendix II: Alternate/ other initial versions of the design.. 27

List of Figures
Figure 1: Overview of system implementation, link ... 10

Figure 2: Expansion of Section Score Values from three to five, now match grade scale. 12

Figure 3: Achievement and Engagement Scorer visual representation using new Section Score Values. . 12

Figure 4: Sentiment Scorer visual representation using new Section Score Values. 13

Figure 5: Running Mark I application with Journey Map. ... 14

Figure 6: New Prototype Application showcasing new front-end UI, some features not shown. 14

Figure 7: Kubernetes command to view deployments with results. .. 16

Figure 8: Screen shot of the journey map tool on Rains Media website. ... 17

Figure 9: Mark II Canvas integration, class list options, and journey map. .. 27

Figure 10: Mark I Graph layouts and Canvas integration. .. 27

Figure 11: Figma mockup of a full screen journey map with tabs, week markers on the X-axis, and

selectable functions. ... 28

Figure 12: Available filter list for specifying resonance’s component weights. ... 28

Figure 13: Proposed Mark II implementation that supports flexible definitions of Resonance using

available data from Canvas. .. 29

Figure 14: Proposed Fade Dynamic modifier being applied to scores used by resonance. 29

Figure 15: Proposed implementation of feature that allows for the visualization of trends of students

between persona groups. ... 30

Figure 16: Mark I vs proposed Mark II Persona implementation. .. 30

1. Introduction

1.1 Problem Statement
The problem we are addressing is the lack of instructor and student resources that analyze student and

course data to predict student resonance with the course. Instructors need a way to accurately

understand students’ experiences in their courses, so they can empathize with students, improve

student interactions, and course design. Students need a tool that allows them to reflect on their class

performance and use it as a basis for instructor communication. Currently, ISU’s course management

software Canvas, does not have a solution for in-depth automated data analysis that measures students’

resonance with the course.

Over a semester, instructors and students are missing feedback that could dynamically influence student

resonance with the course. The problem we are addressing is preventing instructors from accurately

understanding their students’ experiences with the course and how each could change their respective

actions to improve student resonance and course achievement. Our solution uses automatically

generated Journey Maps to visualize student and course data in an interactive application that enables

instructors and students to discover new insights that can be used to change course design and student

interactions with the course material.

1.2 Terms and Definitions

• Journey Map – The journey map is a visual representation of the resonance of a student or a

group over time. The X-axis represents time; the Y-axis is the resonance for that point in the

course. By visually representing the data, the instructor and student can gain new insights that

can drive class design and personal behavioral change.

• Resonance – A loose term for quantifying student experiences with the course throughout the

semester. Resonance is a value generated from Canvas data and data processing to gauge

student experiences in the course. The model of resonance is based on achievement, sentiment,

and engagement components, each provides information that can help an instructor understand

how students are resonating with the course. The model can be customized to investigate

resonance on a more granular level, or to look for subtle correlations between inputs.

• Persona – Students are sorted into groups based on various metrics; these groups are then

graphed accordingly. Persona refers to a specific grouping of students. Default grouping is based

according to students with similar resonance scores. Personas help the instructor understand

how different groups of students resonate with the course.

1.4 Intended Users and Uses
The target audiences for the application are professors and students. Professors and students could

both benefit from a tool that provides users the ability to reflect on course delivery and student

experiences in the course. The tool could create meaningful interpretations of course data and a means

for students and instructors to engage in productive conversations that lead to better class design and

student outcomes.

2. Evolution of Project Design
Our project's evolution had some changes as we got further into coding the project and had a better

understanding of it and what was possible using different elements of it. Through time constraints and

technical constraints by both members of the team and the software’s that was used, some elements of

the project design had to change throughout the course of the project.

2.1 Canvas API
One change to our design was what data was able to be retrieved from Canvas using the Canvas API. As

it has become more important to have a full collection of data to use for our resonance scores, pulling

sentiment statements was an element that had to change for the implementation of our project. Due to

FERPA constraints as students, we are using a mock course to try mimic real data students would enter,

but there were some difficulties we ran into that required a change in plan. One of the difficulties is

there are no actual students in the course. As it is a mock course and all team members needed full

access, everyone in the course is a co-teacher. Within Canvas a co-teacher cannot submit an assignment.

Scores for assignments can be entered but not the student’s response. Due to the confidentiality of

students' scores in Canvas, even if there were students, there is no way to pull the text that a student

enters in Canvas. For a workaround we used an Excel file to extract the sentiment statements. This

works, theoretically, the same as if we were able to pull the responses directly from Canvas. This way

the application can still get a sentiment score for each student even with the limitation that came with

having a mock Canvas course.

Another limitation when using the Canvas API was the speed it takes to retrieve all the data from

canvas. Since every assignment for each student must be gone through it can take around six minutes

just to get all the needed data from Canvas. This is much slower than what the client was looking for out

of our system and this led to us having to make a design change to account for this slow data collection

process.

2.2 Resonance & Journey Map

Three core features we hoped to implement pertaining to resonance and journey map creation were a

dynamic definition of resonance, fade dynamic, and trend enhancer. None of these features were

implemented due to time, complexity, and team member capability issues. The dynamic definition of

resonance would have allowed the user to define alternate components that would be used in the

resonance calculation, more than the current selection. The fade dynamic would have applied weights

to resonance scores based on temporal relevancy, allowing the user to determine how much or how

little past and present scores impact the resonance score. The trend enhancer would have identified

trends in the resonance scores of individual students and personas to help the user interpret the

journey map and changes in resonance. One additional feature we hoped to implement was persona

definition and categorization that works beyond the basic definitions used by the past team. These

features would have made a significant difference and improved the functionality and user experience.

2.3 Front-end

For the front-end, there were enough changes asked of us, so we decided to start a new front-end

application that uses more modern techniques. We implemented a Node.js and React.js project that

works seamlessly with the existing backend architecture. Using primarily JavaScript allows us and future

teams to create a more interactive and intuitive user experience quickly and easily. React.js has many

existing open-source libraries and dependencies that have already created UI components that we can

then customize to fit our needs. Since our client heavily asked for a more immersive interface, React.js

seemed like the best solution.

To create a more immersive experience for the user, the client asked for the journey map to be more

centralized and be the focus of the screen. We worked with the client and went through several

iterations of how to maximize the journey map size, while still having all other functions be accessible

and intuitive. We are taking advantage of many collapsible features to give the user a better experience

than the previous iteration.

As the project progressed and limitations for back-end functionality became more apparent, the front-

end was adjusted to best highlight the functionality that would be available. We did not have to change

too many of the UI features. We briefly discussed if it would be reasonable to still implement UI

components for back-end functionality that is expected in the future, but have it disabled. We explored

this option because it would show users what will be available soon, and create less work for the next

team, but decided to only show working features on the UI since the update to React.js makes it easier

to create new UI components, we are already simplifying work that will be needed later.

When we began connecting the back-end to the front-end there were some difficulties that would

require major refactoring of the code and layout of the project. So, for this case we decided to keep the

projects separate but give the next team the foundations for both so they can focus on connecting the

two. The front-end design is ready to take in data and we have implemented it with some hard-coded

data so it could be properly tested.

3. Requirements

3.1 Functional requirements (specification)
1. Create journey map using stored data

2. Take user input to display student, persona, and class journeys

3. Take user input to customize journey map

4. Journey map should use defined weighting based on achievement, sentiment, engagement

5. Filter definitions can be saved and selected

6. Persona definitions can be saved and selected

7. The application should retrieve data directly from Canvas API

8. Categorize personas based on user input (proximity, student defined persona, best

performing category, sentiment, engagement)

3.2 Resource Requirements
1. The application should use Kubernetes for cluster management

2. The application should be able to interact with Canvas API

3. The application should run on a server provided by ETG

4. The application should use Docker containerization

5. The application should be setup with CI/CD

3.3 Physical Requirements
1. The ETG provided Server should be reliable place to host the application

3.4 Aesthetic Requirements
1. Appealing and attractive layout, colors, and charting

2. Visualization choices represent meaningful data and/or user preferences

3. The web page design should be intuitive for pro and novice users

3.5 User Experiential Requirements
1. The application should be integrated with Canvas API

2. The application should be easy to use

3. The application should be able to compatible with specific needs

4. Page should load cached data within five seconds

5. Page should load non-cached data within thirty seconds

3.6 Economic/market Requirements
1. Our project will not be designed for sale or distribution outside of ISU

2. There are currently no economic requirements for our project. All costs are subject to ISU

financing, currently no technologies will require payments or subscriptions.

3. Must meet FERPA and additional ISU requirements prior to official use at ISU.

3.7 UI Requirements
1. For use on a full screen browser

2. Fullscreen option for journey map

3. Accommodates multiple screen sizes

4. Interactive, allowing toggling and resizing

5. Accommodate different web browsers

6. Professor

a. Save filter definition

b. Load filter definition

c. Change weights of assignments and resonance components

d. Preview information when journey map data point clicked

e. Toggle individual students

f. Toggle individual groups

g. Chart color coded journey map based on persona groups and/or students

h. Clicking on data points provides granular data information

4. Engineering Standards
Below is our list of Engineering standards that we used during the development process and in the

developed application. We identified software development standards learned from previous classes

and are common solutions in industry. Following these standards will help steer our efforts and ensure

we are developing a safe and secure application.

Agile – We employed agile values and principles. This helped us respond to user needs, prioritize tasks,

and improve the quality of work.

FERPA – Followed all FERPA rules and guidelines when handling student data and information.

Kubernetes – Kubernetes is an open-source system for automating deployment, which affects the scope

and management of “containerized” applications. This is a great system for any project to reduce

unnecessary spending and to apply changes to our project. We continued to use Kubernetes for our

project.

Docker – Docker is a platform that is used for developing, shipping, and running applications. This

provides the application with different services for the project, being able to implement continuous

integration of the application.

CI/CD - We used GitLab for CI/CD software development. Updates to the environment will reinforce

accountability and maintainability.

SOLID Principles – Solid software design principles will allow for greater flexibility for later additions and

modifications.

Acceptance / Integration Testing – We will continually ensure that our software is meeting customer

requirements and integrating with the system.

5. Engineering Constraints
The client offered us the choice to build from the past team's project or start over with a new one. We

chose to continue with the past team’s project and their chosen technologies. Some of their

technologies include Python, JavaScript, HTML, and SQL for programming languages, Docker and

Kubernetes for containerized deployment, Canvas for receiving grading information, and Okta for user

authentication. An important constraint was FERPA, and handling student data properly. We cannot

store any student or instructor data, but rather we must pull the data from Canvas when we need it and

handle it securely. Ensuring that the application can run and get this data is important to this project's

implementation. For our iteration of the project, we did not get access to the official ISU Canvas nor

their Okta authentication systems. The Canvas API has a rate limit for data that can be retrieved from

Canvas. Our application experiences slow load times for fresh data pulls versus the application's ability

to cache data once it has been pulled to speed up future data requests.

6. Security Concerns and Countermeasures

The previous team took great care in designing the application to be secure and meet FERPA

requirements. Data is not kept on machines unless necessary. Only data with slow load times from the

Canvas API is cached. Currently only cached data for some workloads is kept on the client's machine or it

is cached for a short period of time behind a firewall and Kubernetes. Cached data is not stored after the

session has ended. Data that is stored on the server is not personally identifiable. No data can be

accessed prior to authentication. There may be additional requirements beyond the minimum specified

by FERPA that ISU would require before the application could be approved for ISU Canvas, Okta, and

deployment certification.

We must ensure that the Canvas API Tokens are handled appropriately. The Canvas API Token is

required to start the application and enable access to the Canvas API. We must ensure that the token is

never hard coded in the code, available via a bash history, and is only stored in an encrypted location.

We rely on Kubernetes Secrets and container environment variables to maintain a secure environment.

We only temporarily store the Canvas access token inside a file when required. A deployment script

overwrites a placeholder for the Canvas API token inside the Kubernetes secret file. Kubernetes secrets

are automatically encrypted when accessing the secret, there is no practical way a bad actor could know

the name of the stored secret and decrypt the Canvas API token, we do not believe this to be a likely

attack vector.

7. Implementation Details

7.1 Implementation Overview
The implementation goals of Mark II are different from those of Mark I. Mark I was the first group to

engage with this problem and started from scratch. The previous team did a great job, but the client had

additional goals for the project. The client gave us three objectives for the Mark II iteration, a more

efficient user interface, an improved algorithm for creating journey maps, and a student facing

visualization. More information and implementation details about the Mark I implementation can found

here, https://sddec21-19.sd.ece.iastate.edu/docs.html. The Mark I implementation took advantage of

great technologies and software engineering techniques; however, we ran into significant issues running

their application. Starting last Fall, it took a significant amount of resources to resolve issues and get the

application running this semester. Original planning did not account for these unforeseen issues,

nevertheless we would like to share what we have achieved for the Mark II implementation.

Figure 1: Overview of system implementation, link

https://sddec21-19.sd.ece.iastate.edu/docs.html
https://sddec21-19.sd.ece.iastate.edu/docs/492-Final_Presentation.pdf

7.2 Canvas API
To get the data from canvas the Canvas API was used. This is a collection of calls that can pull various

aspects from Canvas that can be stored and then analyzed.

To implement this into the application the first step of this is to have a Canvas token. This is a key that

everyone can produce to access the different data in their own personal canvas. There are security and

privacy restraints within this that limit the data that can be retrieved. This data is different for a student

from a class compared to an instructor.

To get the course information the course id must be retrieved so that a course object can be created.

Doing this allows the application to get different information about the course like different submissions

and the grades from each of these submissions. These objects are created for each student so that the

application can retrieve the relevant information needed to do a sentiment analysis for each individual

student in a course.

To analyze the sentiment text from a student there had to be a way to get the sentiment responses from

these students and score them. The python’s Vader Lexicon sentiment analyzer to get these scores. This

will produce four scores based off the text based off negativity, neutrality, positivity, and compound.

The negative, positive, and neutral scores will add up to one and the compound score is a weighted

score that utilizes all these scores, so this is what was used for the sentiment analysis. A compound

score will be between -1 and 1 where a lower score indicates a negative sentiment and a higher score

being a positive one. Another metric that is used is if the score is above 0.05 this is considered a positive

score and less than -0.05 would be a negative one. This gave the application a way to score the

responses of students and gives insights to the instruction on their response without having to read

each response by every student.

7.3 Resonance & Journey Map
An improvement to the journey map creation and resonance calculation was the modification of section

score values for achievement, sentiment, and engagement. The change we made was expanding the

standardization of the resonance value range to the class’s grade scale. This change affected ten or so

files, modifying how those components translate raw data to data that can be plotted on a journey map.

By increasing the number of categories from three to five and using the grade scale to determine value

to ranking relationship. These changes were targeted to bring greater definition to the resonance scores

by increasing the categories for which raw data scores could be standardized for resonance plotting on

the journey map. The code changes were added to the repository but were not activated due to not

having time to verify accuracy of changes. We hope a future team can build upon the changes made.

Figure 2: Expansion of Section Score Values from three to five, now match grade scale.

Figure 3: Achievement and Engagement Scorer visual representation using new Section Score Values.

Figure 4: Sentiment Scorer visual representation using new Section Score Values.

7.4 Front-end

To start implementing the front-end we created a Node.js and React.js project. We chose to use

JavaScript because it is the most common front-end programming language. Node.js is a framework that

handles many of the networking and server connections. React.js is a front-end library that makes

building UI components faster and more seamless. We also utilized many pre-built UI components in the

Material UI library. Material UI has many pre-built React.js components that can be customized to fit

individual application needs. React.js also integrates well with Express, which we use to make calls to

the back-end.

We first made a prototype of the web application to get feedback from the client. We went through

several iterations to get a final prototype that seemed reasonable to complete within the project’s

timeframe. From there, we built the basic UI components from the prototype. Once that was

completed, we started connecting any components to the back-end to be able to display real data. We

did run into issues in this step with the current project layout. We decided to keep the two projects

separate because the refactoring would be beyond the scope and limits of this project. Instead, we used

some hard-coded data to be able to show what the front-end will look like once the front and back end

are connected.

Figure 5: Running Mark I application with Journey Map.

Figure 6: New Prototype Application showcasing new front-end UI, some features not shown.

7.5 Server & Microservices

Several challenges were overcome to run the application on a fresh server. Due to the complexity of the

stack, familiarity with Kubernetes, Docker, Python, YAML, micro-service architecture, APIs (C# and

Python), frontend (JS, html), and server management was needed to address and solve a series of issues

with getting the application to build, deploy, and load.

1. Installation

a. Deprecated packages: The installation of several dependencies was failing due to

changes in library names and compatibility issues. The problematic imports were

identified and addressed in application-level Python files.

b. Server requirements (Protoc, grpc-web): Some requirements weren’t detailed in the

installation guide. Through troubleshooting, it was determined that the deploy errors

were occurring because the server needed additional technologies for the microservices

to be able to communicate (protobufs).

c. Deprecated documentation related to Kubernetes container-runtime: In the past,

Kubernetes used Docker for container-runtime. The project documentation referred to

Docker’s sources for allowing insecure registries (our own microservice APIs) to

communicate with the Kubernetes cluster. Kubernetes now uses containerd for

container-runtime. The daemon for the correct library was updated to solve the access

issues.

2. Missing documents and command statements

a. Dockerfile: Some images were missing from the registry after build and execution of

Docker scripts. A Dockerfile for the service was created to copy dependencies and

build/push the image to the registry. Kubernetes was then able to use the image for pod

deployment.

b. Push statement in script: Some key lines were missing from the image scripts. In one

case, an image was created but not added to a registry. The cause of the problem was

determined to be a lack of command to push the Docker image.

c. Dev infrastructure mixed with prod: In one case, the Docker script was referencing a

“test” version of the YAML file for the architecture’s envoy proxy, resulting in the

production nodePort being unavailable. The team inherited a lot of unused, outdated,

and “commented” code, which made troubleshooting time consuming and, in this case,

caused direct issues in the application.

3. Debugging (tokens, IDs, SQL access)

a. Missing token parameters: Once Kubernetes pods were deployed and functioning

properly, several runtime errors occurred. A missing line in the deployment YAML was

discovered to be the cause of an undefined Canvas token in runtime.

b. Runtime errors: Null errors from hard-coded ID values had to be handled on a case-by-

case basis. Ideally, the app would run without hardcoded values for courses and

students.

c. SQL Access: We were initially unable to access the database from the front end due to

user configurations. A new user was created with special domain permissions.

Figure 7: Kubernetes command to view deployments with results.

For each challenge getting the application to load correctly, we learned about practices for maintaining,

accessing, and debugging a Kubernetes cluster with 11 deployed pods. For example, the Kubernetes

cluster uses namespaces to separate the pod deployments. It was initially impossible to use the

command line to identify pods and troubleshoot deployment issues because pods deployed inside of a

namespace won’t show up unless the command explicitly refers to the namespace. Lessons learned

from the process have been detailed in Appendix I.

8. Testing Process and Test Results
We optimized the existing tests and frameworks to work with the changes made for Mark II. Testing was

completed on the Canvas API, API Speed, SQL, Data Analysis Pipeline, and Front-end. Tests were

conducted automatically and manually.

Canvas API
The Canvas API Speed is very similar to the Mark I implementation. Non-cached and numerous API calls

take 15+ seconds due to sever throttling of the Canvas API. Cached API calls load very quickly, usually

less than one second. Since the Canvas API is an external application that was implemented into our

project it is already tested externally and no changes can be made. Testing was done to make sure that

the correct data was being pulled and processed correctly.

SQL Testing
The goal of SQL testing was to verify tables are storing data correctly. This ensured that the tables were

created correctly and storing the data correctly, there were no issues between the frontend and the

backend. The tests matched what was being stored with what was being displayed on the front-end with

the correct values being shown on the journey maps.

Data Analysis Pipeline
The data analysis pipeline we tested each microservice for expected outputs using the protobuf

message. The tests tried various values that checked if the final value matches the expected and that the

application did not crash. We also used simple processes for checking the application runs as expected

for proper users and different web browsers. This was done using unit testing. The application can run

on popular web browsers and invalid user inputs such as trying to login from a user with no permissions

are blocked.

Front End
The front end was tested to ensure that different users have the proper permissions. This will verify

speeds for creating the journey map along with the proper filters and data. A VPN was used for the

application, and this helps to make sure the users cannot access other data. Trying to log in as a

different user is not possible, which means that it is working properly. We also used different browsers

to make sure that the journey map still displayed properly on different ones. This was done by doing use

case testing and after looking at the application on different browsers and so no results that resulted in

us having to make any changes to the application.

9. Related Literature and Products
Journey maps are traditionally used in a business context to aggregate customer experiences and

identify aspects of customer service that can be improved. Their application is highly conceptual and

theoretical, a prompt which helps managers plan and map out a customer experience. Some journey

maps based on specific user responses and data have been applied to a university setting. However,

existing commercial products focus on a more general student experience—such as onboarding—and

less with a specific course. For example, Rains Media offers a product to help analyze the recruitment of

prospective students visualized in figure 8.

Figure 8: Screen shot of the journey map tool on Rains Media website.

The only known attempts at applying data-based journey maps to a course setting are part of a grant

from the National Science Foundation. The grant enabled professors and teaching assistants the time

and resources to plan and implement journey maps for engineering courses. The drawbacks of these

early attempts at journey maps were that they involved manual accumulation, recording, and mapping

of data. The study does indicate that journey maps improve professor empathy with students and leads

to greater understanding of student issues and performance.

We thus have the benefit and disadvantage of being pioneers in this space. In general, an academic

course offers a high potential reward for the application of a journey map, due to the abundance of data

provided throughout a semester.

For our project, we will follow the work of a previous Senior Design group that worked on the first

iteration of this LTI Canvas Resonance tool. For their advantage it has a working interface for the

instructor. The journey map lays out the assignments and lets the instructor change some features. This

iteration did have some shortcomings, which is our goal to improve in our iteration. The first of these

was the issue with the resonance algorithm. As it stands it does not do a wonderful job giving the

correct resonance information and needs to be improved in that regard. Second would be the issue that

it currently cannot connect directly within the Canvas API. The work around that they used was to use

their own Okta to run the application, but this would not serve the benefit of students as is the goal of

the design. The final shortcoming is it does not have a student interface, so nothing is provided to the

students.

10. Conclusion
The goals of the Mark II iteration have not been met; however, each team member was able to

contribute to improvements that strengthened the state of the project, and any future work on the

application. Unforeseen complications with setting up the application, complexity of the past team’s

implementation, and lack of team cohesion limited the success of project. The team was able to set up a

mostly working Mark I application, make infrastructure improvements, and prototype changes to Canvas

API calls, sentiment analysis, resonance scoring, and UI features. We hope the improvements and work

completed on Mark II help future work on the project and all team members gained the experiences

that will help them in their careers.

Appendix I - Operation Manual
Installation of Application

Environment Set Up

In the following section of the document, we go through the process of setting up our application from

scratch. Our application is Kubernetes based and thus we make two key assumptions in that section:

• You have access to a vanilla Kubernetes cluster using the Kubectl command line tool

• The Kubernetes cluster and you alike have access to a container registry on which to store

container images

Because Kubernetes administration is not a commonly taught skill set at the time of writing, we will

briefly go over how to install and set up a necessary cluster and container registry in the context of an

Ubuntu 18.04/20.04 Virtual Machine.

In order to set up the cluster and container registry, the following steps will need to be followed:

1. Install Outside Tools

a. Install Docker

b. Install Docker-compose

c. Install Kubernetes (Kubelet, Kubectl, Kubeadm)

2. Set Up Cluster Infrastructure

a. Initialize the Kubernetes Cluster

b. Setup Container Networking Interface

c. Setup Container Registry

Install Outside Tools
Our infrastructure can be set up quite easily without too much understanding of what is going on under

the hood. To accomplish this, we will rely on some external packages to do some of the heavy lifting for

running the container registry (where we will house our application images -think binaries) and

Kubernetes cluster instantiation/administration. Thus, we will need to install the following packages on

the VM which the application will be deployed:

• Docker

• Docker-Compose

• Kubernetes (Kubelet, Kubectl, Kubeadm)

• Protoc

Installing Docker on Ubuntu 18.04/20.04

The first thing we want to do is install docker onto the machine which will be running our cluster. This

will allow Kubernetes to use docker as the container runtime and allow you to build the application from

the VM if so desired. To install docker on ubuntu, follow the instructions at this link:

https://docs.docker.com/engine/install/ubuntu/ . For Linux distributions, it is recommended to add the

user to the docker users' group to manage docker as a non-root user account (link here:

https://docs.docker.com/engine/install/linux-postinstall/).

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/

Installing Docker-Compose on Ubuntu 18.04/20.04

The docker-compose toolset allows you to manage containerized applications on a small scale. In our

specific usage however, we are simply going to use the command line tool to spin up a container registry

that we can push and pull our container images to. To install docker compose, navigate to the link here (

https://docs.docker.com/compose/install/), click on our operating system (for us, Linux) in the ‘Install

Compose’ section, and follow the instructions there.

Installing Kubernetes on Ubuntu 18.04/20.04

Kubernetes is the container management system that we will be using to manage the state of our

application. We have provided scripts and YAML files that will set up the Kubernetes cluster for you if

not already done. Before using the scripts however, we need to install the command line tools that the

script relies on. To install these tools, follow the instructions at the link provided here:

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/.

Installing Protoc on Ubuntu 18.04/20.04
Using snap, you can install Protoc library with `sudo snap install protobuf –classic`. In addition, GRPC

web needs to be installed. The binary should go directly into usr/local/bin. It should be given

permissions with: chmod +x.

Set Up Cluster Infrastructure

At this point you should have kubelet, kubeadm, kubectl, and Protoc installed on your VM, and we can

now use the scripts in the git repository to set up the cluster and container registry.

Initialize the Kubernetes Cluster

To initialize the cluster, clone the git repository to the VM on which we are going to run our application.

Inside the cloned repository, navigate to the Infrastructure/Cluster_Specification/Kubeadm directory.

Run the create-cluster.sh file and wait for completion. This will create a Kubernetes cluster for you with

the help of kubeadm and then set the proper permissions and file locations for you to be able to control

the cluster. Before running the command, execute `swapoff –a` to prevent configuration issues. Once

the cluster is initiated, the taint needs to be removed from the control plane. Execute: kubectl taint nodes

--all node-role.kubernetes.io/control-plane-

Setup Container Networking Interface

Next we need to set up the Container Networking interface so that our microservices have a way to

communicate with each other. There are tons of different CNIs you could choose to use for different

needs, however our application does not require anything fancy, so we chose to use the most basic (and

usually the default) CNI - flannel. To install flannel, navigate to CNI directory parallel to the Kubeadm

directory we were just in (Infrastructure/Cluster_Specification/CNI). Once there, run the command:

`kubectl apply -f flannel.yaml`

https://docs.docker.com/compose/install/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://github.com/grpc/grpc-web#code-generator-plugin
https://github.com/grpc/grpc-web#code-generator-plugin

This will create the Kubernetes objects necessary and install flannel onto the cluster.

Setup Container Registry

Finally we need to set up the container registry that will house the images that we create for our

microservices. The container registry will simultaneously allow the Kubernetes cluster to (pull and then

run) our application as we specify.

To create the container registry on the VM, navigate to the

Infrastructure/Cluster_Specification/Container_Registry directory and follow the steps below:

1. Create a directory named data

2. Run: docker-compose up

This will open a container registry on port 5000 for pushing and pulling to. To use this with the just-

installed docker instance, edit the daemon for the registry package. Docker is now deprecated for

Kubernetes, instead, update the daemon for containered to allow unsecure registries. You can verify

that the “container-runtime” is containered and not Docker by running: kubectl get nodes –o wide.

At this point, you have an Ubuntu 18.04 VM provisioned to you that houses a Kubernetes cluster with an

installed CNI and image registry. Now we can begin setting up the actual application.

Application Set Up

In order to set up the application, three steps are required:

1. Build the Application’s Microservices and Push to Image Registry

2. Deploy the Application’s Microservices and Kubernetes Objects

3. Setup MySQL Database

Build Application

To make building the application easy, there is a ‘build-application.sh’ file located in the root of the git

repository once cloned. To use this script, simply run:

./build-application <REPOSITORY NAME>

And wait for the text “BUILD COMPLETE” to be displayed. On the first run, this may take a while.

Afterwards, this will take substantially less time. It is important to note that you should not include the

angle brackets around the repository name when running this script. For example:

./build-application sddec21-19.ece.iastate.edu:5000

Is correct while:

./build-application <sddec21-19.ece.iastate.edu:5000>

Is incorrect.

If you’ve already built most of the application but just want to build a portion, navigate to the directory

containing the code for the portion of the application you wish to build and run the script that begins

with the text “image_registry_dockerize”, passing in the image registry address as an argument just as in

the “build-application.sh” script. For example, if we wish to just update the Graph Endpoint Service, we:

1. Navigate to the directory “Data_Analysis/GraphEndpoint/”

2. Run: ./image_registry_dockerize_graph_endpoint.sh <REPOSITORY NAME> with the image repository

name you are using.

3. The pods for the services are set to “imagePullPolicy: Always.” However, a name change to the

image version is expected to trigger an update. You can manually update the pod with the build

image with: kubectl rollout restart deployment <pod name> --namespace=<namespace name>

Deploy Application

At this point in the setup, we have a Kubernetes cluster, a container network interface, and an image

registry filled with container images that we just built in the last section. All that is left now is to:

1. Set proper Access Token from Canvas

2. Deploy Microservices to Kubernetes

Setting Proper Access Token from Canvas

In order to set the proper access token from canvas, we first need to retrieve the token from canvas. To

do this, open and log into canvas, then follow the steps below:

1. Generate your own Canvas Access Token

a. Click on the Account button on the left side of the screen.

b. Choose the Settings selection that appears on the pop-up menu

c. Under Approved Integrations click the button that says + New Access Token

i. In the Purpose Textbox, say “Canvas LTI Student Climate Dashboard”

ii. In the Expires Box, choose when you want to need to refresh the token

d. Generate this token and copy the value to the right of Token

2. Set the Access Token in Application

a. On the VM, go to the Infrastructure/Application_Infrastructure directory

b. Open the bearer_token.txt file, delete all contents, and place only your token in the file.

Save.

Deploying Microservices to Kubernetes

Now that the token has been saved to the file, we are ready to deploy the application by following the

steps below:

1. Run the deploy-application.sh file, passing in the image repository address that you are using,

like below:

./deploy-application sddec21-19.ece.iastate.edu:5000

2. Delete your token from the bearer_token.txt file.

The writing your token to the bearer_token.txt file and then deleting it accomplishes a few things with

respect to security:

• Keeps the plaintext representation of the token on the computer to a minimum.

• Hides the token from the bash_history file and anyone who can view your command history.

It is important to note that anyone who has the Kubernetes token can access this token, so it is

important not to distribute this token without care.

Set Up MySQL Database

1. Install MySQL Database

a. apt install mysql-server

b. apt install mysql-client

2. Ensure that the server has the correct IPTables/permissions for your specific machine

3. Install MySQL Workbench (optional but easier than command line client)

4. In either workbench or client, log in as root user (or set up a new user)

5. Additionally, add database information in “Data_Analysis/SQLConnection/config.ini”

6. Setup Database Schema:

create table if not exists users (

userID int unique not null,
defaultCourse int,
bearerToken int not null,
primary key (userID)

);

create table if not exists courses (

courseID int not null,
userID int not null,
primary key (courseID),
foreign key (userID) references users(userID) on delete cascade

);

create table if not exists categories (

uniquePairID int not null auto_increment,
groupNum int not null,
groupName varchar(256) not null,
filterID int not null,
courseID int not null,

userID int not null,
primary key (uniquePairID),
foreign key (filterID) references filters(filterID) on delete cascade,
foreign key (courseID) references courses(courseID) on delete cascade,
foreign key (userID) references users(userID) on delete cascade

);

create table if not exists students (

uniquePairID int not null auto_increment,
studentID int not null,
courseID int not null,
initialResonance double,

primary key (uniquePairID),
foreign key (courseID) references courses(courseID) on delete cascade

);

create table if not exists studentGroups (

pairID int not null auto_increment,
studentID int not null,
groupID int not null,
primary key (pairID),
foreign key (studentID) references students(uniquePairID) on delete cascade,
foreign key (groupID) references categories(uniquePairID) on delete cascade

);

create table if not exists filters (

filterID int not null auto_increment,
filterName varchar(256) not null,
courseID int not null,
userID int not null,
assignmentWeights varchar(256) not null,
achievementWeight int not null,
sentimentWeight int not null,
engagementWeight int not null,
primary key (filterID),
foreign key (courseID) references courses(courseID) on delete cascade,
foreign key (userID) references users(userID) on delete cascade

);

User Manual
Updating Canvas Access Token

In order to update the canvas access token with a new token, simply:

1. Open the bearer_token.txt file.

2. Delete all contents.

3. Place your new token inside of the file with no extra characters.

4. Save.

5. Deploy the new K8s Secret by running:

cat bearer_secret.yaml | sed -e "s/<BEARER_TOKEN>/${BEARER_TOKEN}/" |
kubectl apply -f -

6. All as one line.

7. Delete your token from the “bearer_token.txt” file.

Frontend

1. How to access webpage

a. On a modern web browser, enter the hostname of your cluster into the URL bar and

append :30011 to the end of the URL.

b. Navigating to this page takes the user to the Okta-managed login page.

i. NOTE: The Okta-managed login page must be configured so that login is

redirected to their Okta Organization of choice. The user either needs to create

and manage their own Okta organization or set it up with the university’s Okta

credentials. See #2 for more details.

c. Enter user credentials and click “Log In”. If login is successful, Okta will return a login

cookie and the frontend application will automatically redirect the user to

:30011/graph. This page is inaccessible without the Okta authentication cookie.

d. The user is now logged in and viewing the main page of the application.

2. How to setup an Okta Login

a. This process requires making edits to the program’s files. Settings for Okta

authentication are in the file “/FrontendApplication/server.js”.

b. The user must be an administrator for the Okta organization they would like to connect

to the application. Users can create and manage their own Okta organization.

c. To connect the Okta to the application, first make a new Open ID Connect App

Integration in the Okta if you do not have one already. This can be done by going to the

Okta Dashboard, clicking on “SSO Apps”, then selecting “Create App Integration”.

i. Once created, you can view the configuration and relevant settings for this

integration by selecting it from the list of applications.

ii. Make sure that the Okta integration uses Client secret for authentication.

d. The first change to make in server.js is swapping the issuer in the Okta Configuration

section for your own issuer. This is essentially the URL to your okta and is unique for

each Okta. This is necessary for making sure the application is looking towards your Okta

for authentication.

e. The next set of changes is to client_id and client_secret in the Okta Config section. Client

id is provided in the client credentials of the Okta integration. Navigate to that section

and copy the id over into server.js. As for client secret, it is provided just below the

client credentials section. If one does not already exist, you will need to make a new

one. Once a secret exists, just copy it over into the corresponding spot in the server.js

file.

f. The last set of changes in the Okta Config is to the appBaseUrl and the redirect_uri. The

appBaseUrl should be set to whatever the base URL for your application is. This is the

URL you enter when you want to access the application. As for the redirect_uri, this will

need to be configured in both the server.js file and in the Okta integration. This will end

up being whatever the base URL is with “/authorization-code/callback” added to the

end. I.E., if the base URL is http://sdmay23-42.ece.iastate.edu:30011, the redirect URI is

going to be http://sdmay23-42.ece.iastate.edu:30011/authorization-code/callback.

i. If you are having trouble find the redirect uri in the Okta integration, it is located

on the general tab in the login section. You need to setup the sign-in redirect

URI for the authorization to work.

g. Once all the above changes are made, any valid log-in to the Okta should allow you to

access the application.

Kubernetes

Useful commands

kubectl get pods/svc/nodes/deployments --all-namespaces : gives an overview of running services

http://sdmay23-42.ece.iastate.edu:30011/
http://sdmay23-42.ece.iastate.edu:30011/authorization-code/callback

kubectl describe <pod name> --namespace=<namespace name>: gives deeper view of pod, useful for

troubleshooting deployment errors

kubeadm reset: will kill any running Kubernetes nodes.

sudo kubectl rollout restart deployment <pod/deployment name> --namespace=<namespace name>: Will update

a pod with the newest available image in the registry.

Error logs

Logs for errors from applications running on Kubernetes may not be accessible through the browser

console. Messages can be viewed through Kubernetes’ `log` command:

sudo kubectl logs <pod name> --namespace=<namespace name>

Troubleshooting deployments
Several layers of “infrastructure as code” facilitate the deployment through simple scripts. If an issue

arises in deployment, it can be helpful to understand the deployment flow.

Building images

The script for building images will cd into the directory for each service. Here, it executes a more specific

script called “./image_registry_<service name>.sh”. The scripts are responsible for:

• Copying dependencies into a common folder

• Building the docker image

• Pushing the docker image to the registry where Kubernetes will access it

Docker build configurations are handled by a file called `Dockerfile` within the same directory as the

script.

Pod deployment

The script for deploying the app will, similarly, call a suite of files for respective services. Each

deployment will refer to images hosted in the Docker repository. Information for each pod is defined

through “yaml” documents. The primary dependency is the image defined under “containers.” It is also

important to note the “nodePort” defined for each pod, as it defines the port for the pod/service.

Appendix II: Alternate/ other initial versions of the design

Figure 9: Mark II Canvas integration, class list options, and journey map.

Figure 10: Mark I Graph layouts and Canvas integration.

Figure 11: Figma mockup of a full screen journey map with tabs, week markers on the X-axis, and
selectable functions.

Figure 12: Available filter list for specifying resonance’s component weights.

Figure 13: Proposed Mark II implementation that supports flexible definitions of Resonance using
available data from Canvas.

Figure 14: Proposed Fade Dynamic modifier being applied to scores used by resonance.

Figure 15: Proposed implementation of feature that allows for the visualization of trends of students
between persona groups.

Figure 16: Mark I vs proposed Mark II Persona implementation.

